fbpx
  • Graniastosłupy

    • Sześcian

      • Zadanie 1.

        Pole sześcianu jest równe 216 cm2. Oblicz objętość tego sześcianu, oraz sinus kąta nachylenia przekątnej tego sześcianu do płaszczyzny podstawy.

      • Zadanie 2.

        Objętość sześcianu jest równa 64 cm3. Oblicz pole powierzchni całkowitej tego sześcianu, oraz cosinus kąta nachylenia przekątnej tego sześcianu do płaszczyzny podstawy.

      • Zadanie 3.

        Oblicz pole powierzchni całkowitej i objętość sześcianu, którego przekątna jest o 2 dłuższa od jego krawędzi.

      • Zadanie 4.

        Punkty K, L, M są środkami krawędzi BC, GH i AE sześcianu ABCDEFGH o krawędzi długości 1 ( rysunek w filmie ). Oblicz pole trójkąta KLM.

      • Zadanie 5.

        Sześcian o krawędzi 4 cm przecięto płaszczyzną wyznaczoną przez równoległe przekątne podstaw. Oblicz pole otrzymanego przekroju.

      • Zadanie 6.

        Sześcian o krawędzi a przecięto płaszczyzną przechodząca przez krawędź dolnej podstawy. Płaszczyzna ta tworzy z podstawą kąt \alpha taki, że cos\alpha =\frac{4}{5} . Oblicz pole otrzymanego przekroju.

      • Zadanie 7.

        Sześcian o krawędzi a przecięto płaszczyzną przechodząca przez krawędź dolnej podstawy (rysunek w filmie). Płaszczyzna ta tworzy z podstawą kąt \alpha taki, że cos\alpha =\frac{4}{5} . Oblicz pole otrzymanego przekroju.

      • Zadanie 8.

        Sześcian o krawędzi długości 4 cm przecięto płaszczyzną przechodzącą przez przekątną BD dolnej podstawy i wierzchołek C’ górnej podstawy ( rysunek w filmie ). Oblicz pole otrzymanego przekroju.

      • Zadanie 9.

        Sześcian o krawędzi długości 4 cm przecięto płaszczyzną przechodzącą przez środki sąsiednich krawędzi CD i BC i wierzchołek C’ górnej podstawy ( rysunek w filmie ). Oblicz pole otrzymanego przekroju.

    • Sześcian (2)

      • Zadanie 1.

        Ze środka ściany sześcianu o krawędzi a poprowadzono prostą prostopadłą do przekątnej sześcianu. Oblicz długości odcinków na jakie ta prostopadła podzieliła przekątną sześcianu.

      • Zadanie 2.

        Dany jest sześcian ABCDA’B’C’D’ o krawędzi długości a. Punkt K jest środkiem ściany DD’C’C, a punkt M środkiem ściany  A’B’C’D’ .
        a) Wyznacz długość odcinka AK.
        b) Oblicz cosinus kąta zawartego między odcinkami AK i  AM.

      • Zadanie 3.

        Wykaż , że w sześcianie, odległość krawędzi od nieprzecinającej się z nią przekątnej sześcianu jest równa połowie długości przekątnej ściany.

      • Zadanie 4.

        Sześcian o krawędzi długości a przecięto płaszczyzną przechodzącą przez przekątną podstawy i tworzącą z płaszczyzną podstawy kąt 45°. Oblicz pole otrzymanego przekroju.

      • Zadanie 5.

        Sześcian o przekątnej długości d przecięto płaszczyzną przechodzącą przez przekątną podstawy i tworzącą z płaszczyzną podstawy kąt 30°. Oblicz pole otrzymanego przekroju.

      • Zadanie 6.

        Sześcian o krawędzi długości a przecięto płaszczyzną przechodzącą przez przekątną podstawy i tworzącą z płaszczyzną podstawy kąt 60°. Oblicz pole otrzymanego przekroju.

      • Zadanie 7.

        Sześcian ABCDA’B’C’D’ o krawędzi podstawy długości a przecięto płaszczyzną przechodzącą przez wierzchołki A i C oraz środki krawędzi A’D’ i C’D’. Oblicz pole otrzymanego przekroju.

      • Zadanie 8.

        Na przekątnych AB i CD  sąsiednich ścian bocznych sześcianu ( przekątne AB i CD leżą na prostych skośnych) wybrano punkty E i F tak, że |AB|:|EB|=|DF|:|FC|=2. Wykaż, że odcinek EF jest prostopadły do przekątnych AB i CD. (rysunek w filmie)

    • Prostopadłościan

      • Zadanie 1.

        Oblicz pole powierzchni całkowitej oraz objętość  prostopadłościanu o wymiarach 6 cm, 15 cm, 20 cm.

      • Zadanie 2.

        Oblicz pole powierzchni całkowitej oraz objętość  prostopadłościanu o przekątnej długości 10 cm i krawędziach podstawy długości 4 cm i 5 cm.

      • Zadanie 3.

        Oblicz pole powierzchni całkowitej oraz objętość  prostopadłościanu o przekątnej długości 8 cm tworzącej z płaszczyzną podstawy kąt 300 wiedząc, że jedna z krawędzi podstawy ma długość 4 cm.

      • Zadanie 4.

        Oblicz pole powierzchni całkowitej oraz objętość  prostopadłościanu wiedząc, że jego przekątna tworzy z płaszczyzną podstawy kąt 60o, a długości podstaw to 5 cm i 7 cm.

      • Zadanie 5.

        Przekątne ścian wychodzące z tego samego wierzchołka prostopadłościanu mają długość 10,6\sqrt{17},8\sqrt{10} . Oblicz długość przekątnej tego prostopadłościanu.

      • Zadanie 6.

        Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu wychodzących z tego samego wierzchołka prostopadłościanu to 1:2:3. Oblicz długość przekątnej tego prostopadłościanu.

    • Graniastosłup prawidłowy czworokątny

      • Zadanie 1.

        Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 5 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli przekątna jego ściany bocznej tworzy z krawędzią podstawy kąt 300.

      • Zadanie 2.

        Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 5 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli przekątna jego ściany bocznej tworzy z krawędzią boczną kąt 300.

      • Zadanie 3.

        Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 5 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli przekątna jego ściany bocznej tworzy z przekątną graniastosłupa kąt 300.

      • Zadanie 4.

        Kąt między przekątnymi sąsiednich ścian bocznych graniastosłupa prawidłowego czworokątnego jest równy 600 ( rysunek w filmie ). Wykaż, że taki graniastosłup jest sześcianem.

      • Zadanie 5.

        Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 4 cm. Oblicz długość przekątnej tego graniastosłupa, jeśli tworzy ona z przekątną podstawy kat 300.

      • Zadanie 6.

        Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 4 cm. Oblicz długość przekątnej tego graniastosłupa, jeśli tworzy ona z przekątną jednej ze ścian bocznych kąt 300.

      • Zadanie 7.

        Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego jest trzy razy większe od jego pola powierzchni bocznej. Oblicz cosinus kąta zawartego między przekątną tego graniastosłupa, a jego krawędzią boczną.

      • Zadanie 8.

        Pole podstawy graniastosłupa prawidłowego czworokątnego jest równe 16 cm2. Oblicz objętość tego graniastosłupa, jeśli jego przekątna ma długość 9 cm.

      • Zadanie 9.

        Pole powierzchni bocznej graniastosłupa prawidłowego czworokątnego jest równe 48\sqrt{3} cm2. Przekątna ściany bocznej tworzy z krawędzią boczną kąt 300. Oblicz długość tej przekątnej oraz objętość tego graniastosłupa.

      • Zadanie 10.

        Przekątna graniastosłupa prawidłowego czworokątnego ma długość d , a sinus kąta między tą przekątną, a krawędzią podstawy jest równy p. Wykaż, że wysokość tego graniastosłupa wyraża się wzorem d\sqrt{2p^{2}-1} 

      • Zadanie 11.

        W graniastosłupie prawidłowym czworokątnym sinus kąta między przekątną podstawy a przekątną ściany bocznej wychodzącymi z tego samego wierzchołka jest równy \frac{4}{5} . Oblicz objętość i pole powierzchni całkowitej tego graniastosłupa, jeśli przekątna jego ściany bocznej ma długość 5.

    • Graniastosłup prawidłowy trójkątny

      • Zadanie 1.

        Przekątna ściany bocznej graniastosłupa prawidłowego trójkątnego tworzy z krawędzią podstawy kąt . Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli cos\alpha =\frac{1}{3} i krawędź boczna ma długość 6 cm.

      • Zadanie 2.

        Wysokość graniastosłupa prawidłowego trójkątnego jest równa 8, a jego objętość wynosi 32\sqrt{3} . Oblicz długość krawędzi podstawy tego graniastosłupa i pole powierzchni całkowitej.

      • Zadanie 3.

        Przekątna ściany bocznej graniastosłupa prawidłowego trójkątnego tworzy z krawędzią podstawy kąt 300. Oblicz pole powierzchni bocznej tego graniastosłupa, jeżeli pole podstawy tego graniastosłupa wynosi \frac{9\sqrt{3}}{4} .

      • Zadanie 4.

        Przekątna ściany bocznej graniastosłupa prawidłowego trójkątnego ma długość 10. Oblicz objętość i pole powierzchni całkowitej tego graniastosłupa, jeżeli promień okręgu opisanego na podstawie jest równy \sqrt{3} .

      • Zadanie 5.

        W graniastosłupie prawidłowym trójkątnym o krawędzi  podstawy długości 1 promień okręgu opisanego na ścianie bocznej jest czterokrotnie  większy od promienia okręgu wpisanego w podstawę. Oblicz objętość tego graniastosłupa.

    • Graniastosłup prawidłowy sześciokątny

      • Zadanie 1.

        Dłuższa przekątna podstawy graniastosłupa prawidłowego sześciokątnego ma długość 4. Dłuższa przekątna tego graniastosłupa tworzy z płaszczyzną podstawy kąt 300. Oblicz objętość tego graniastosłupa.

      • Zadanie 2.

        Krótsza przekątna podstawy graniastosłupa prawidłowego sześciokątnego ma długość \sqrt{3}, a jego wysokość jest równa 4.Oblicz objętość i długości przekątnych tego graniastosłupa.

      • Zadanie 3.

        Krótsza przekątna graniastosłupa prawidłowego sześciokątnego ma długość 4\sqrt{3}. Wysokość graniastosłupa jest trzy razy dłuższa od krawędzi podstawy. Oblicz objętość tego graniastosłupa.

      • Zadanie 4.

        Dłuższa przekątna graniastosłupa prawidłowego sześciokątnego tworzy z płaszczyzną podstawy kąt 600 . Krótsza przekątna podstawy tego graniastosłupa jest równa 2\sqrt{3}. Oblicz pole powierzchni całkowitej tego graniastosłupa.

    • Inne graniastosłupy

      • Zadanie 1.

        Podstawą graniastosłupa prostego jest trójkąt równoramienny o jednym z kątów 1200 i ramionach długości 8 cm. Oblicz pole powierzchni bocznej tego graniastosłupa, jeżeli jego wysokość jest równa 11 cm.

      • Zadanie 2.

        Podstawą graniastosłupa prostego jest romb o kącie ostrym 300 i boku długości 12 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli jego wysokość jest równa 8 cm.

      • Zadanie 3.

        Podstawą graniastosłupa prostego jest trapez równoramienny o bokach długości : 12 cm, 5 cm, 6 cm, 5 cm. Oblicz wysokość tego graniastosłupa, jeśli pole powierzchni całkowitej tego graniastosłupa jest równe 492 cm2, następnie oblicz objętość tego graniastosłupa.

      • Zadanie 4.

        Podstawą graniastosłupa prostego jest romb o kącie ostrym \alpha. Wszystkie krawędzie tego graniastosłupa mają długość a . Uzasadnij, że krótsza przekątna tego graniastosłupa ma długość równą a\sqrt{1+4sin^{2}\frac{\alpha }{2}}

      • Zadanie 5.

        Cztery ściany graniastosłupa pochyłego są kwadratami o boku długości 5 cm, a odcinek EP jest jego wysokością ( rysunek w filmie ). Ściany boczne ABFE i DCGH są rombami o kącie ostrym \alpha takim, że sinα = 0,7. Oblicz objętość tego graniastosłupa.

    • Inne graniastosłupy (2)

      • Zadanie 1.

        Oblicz objętość graniastosłupa prawidłowego trójkątnego, w którym długość krawędzi podstawy jest równa a oraz kąt nachylenia przekątnej ściany bocznej do sąsiedniej ściany bocznej ma miarę 45° .

      • Zadanie 2.

        W graniastosłupie prawidłowym trójkątnym pole powierzchni bocznej jest równe sumie pól obu podstaw. Oblicz cosinus kąta nachylenia przekątnej ściany bocznej do sąsiedniej ściany bocznej.

      • Zadanie 3.

        Podstawą prostopadłościanu ABCDA’B’C’D’ jest kwadrat ABCD , a odcinki AA’, BB’, CC’, DD’ są krawędziami bocznymi. Oblicz odległość wierzchołka B’ od płaszczyzny ACD’ wiedząc, że |AB|=a i |AA’|=b.

      • Zadanie 4.

        Krawędź podstawy graniastosłupa prawidłowego sześciokątnego ma długość a. Najdłuższa przekątna graniastosłupa jest cztery razy dłuższa od najkrótszej przekątnej podstawy. Oblicz objętość graniastosłupa.

      • Zadanie 5.

        Podstawą graniastosłupa prostego jest równoległobok o obwodzie 18. Przekątne graniastosłupa mają długości 9 i \sqrt{33}, a krawędź boczna 4. Oblicz objętość graniastosłupa.

      • Zadanie 6.

        Podstawą graniastosłupa prostego jest równoległobok o kącie ostrym α. Przekątne graniastosłupa są nachylone do płaszczyzny podstawy pod kątami β i γ  (β< γ), a wysokość graniastosłupa ma długość H. Oblicz objętość tego graniastosłupa.

      • Zadanie 7.

        Podstawą graniastosłupa prostego jest romb o kącie ostrym α. Krótsza przekątna graniastosłupa ma długość d i tworzy ze ścianą boczną kąt β. Wyznacz objętość tego graniastosłupa.

    • Przekroje graniastosłupów

      • Zadanie 1.

        Graniastosłup prawidłowy trójkątny przecięto płaszczyzną przechodzącą przez  krawędź dolnej podstawy i przeciwległy wierzchołek górnej podstawy . Płaszczyzna ta tworzy z podstawą kąt α, a pole otrzymanego przekroju wynosi S. Oblicz objętość graniastosłupa.

      • Zadanie 2.

        Podstawą prostopadłościanu jest kwadrat o boku 4. Prostopadłościan przecięto płaszczyzną przechodzącą przez przekątną podstawy i nachyloną do płaszczyzny podstawy pod kątem α . Otrzymany przekrój jest trójkątem o polu 16. Wyznacz miarę kąta α.

      • Zadanie 3.

        Dany jest graniastosłup prawidłowy trójkątny o krawędzi podstawy a=6 i wysokości h=9. Oblicz pole powierzchni przekroju tego graniastosłupa płaszczyzną przechodzącą przez krawędź podstawy i środek ciężkości drugiej podstawy.

      • Zadanie 4.

        Graniastosłup prawidłowy czworokątny przecięto płaszczyzną przecinającą jeden z wierzchołków podstawy, otrzymując w przekroju romb o kącie ostrym α. Wyznacz cosβ, gdzie β jest kątem nachylenia płaszczyzny przekroju do płaszczyzny podstawy bryły.