Inne graniastosłupy
- Zadanie 1.
Podstawą graniastosłupa prostego jest trójkąt równoramienny o jednym z kątów 1200 i ramionach długości 8 cm. Oblicz pole powierzchni bocznej tego graniastosłupa, jeżeli jego wysokość jest równa 11 cm.
- Zadanie 2.
Podstawą graniastosłupa prostego jest romb o kącie ostrym 300 i boku długości 12 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli jego wysokość jest równa 8 cm.
- Zadanie 3.
Podstawą graniastosłupa prostego jest trapez równoramienny o bokach długości : 12 cm, 5 cm, 6 cm, 5 cm. Oblicz wysokość tego graniastosłupa, jeśli pole powierzchni całkowitej tego graniastosłupa jest równe 492 cm2, następnie oblicz objętość tego graniastosłupa.
- Zadanie 4.
Podstawą graniastosłupa prostego jest romb o kącie ostrym
. Wszystkie krawędzie tego graniastosłupa mają długość
. Uzasadnij, że krótsza przekątna tego graniastosłupa ma długość równą
- Zadanie 5.
Cztery ściany graniastosłupa pochyłego są kwadratami o boku długości 5 cm, a odcinek EP jest jego wysokością ( rysunek w filmie ). Ściany boczne ABFE i DCGH są rombami o kącie ostrym
takim, że sinα = 0,7. Oblicz objętość tego graniastosłupa.
- Zadanie 1.