Kąt dwuścienny
- Zadanie 1.
Oblicz objętość ostrosłupa prawidłowego czworokątnego, którego długość krawędzi podstawy jest równa 6, a kąt miedzy dwiema sąsiednimi ścianami bocznymi ma miarę 120°.
- Zadanie 2.
W ostrosłupie prawidłowym trójkątnym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy. Oblicz cosinus kąta utworzonego przez dwie sąsiednie ściany boczne.
- Zadanie 3.
Dany jest ostrosłup prawidłowy sześciokątny. Krawędź boczna jest dwa razy dłuższa od krawędzi jego podstawy. Wyznacz cosinus kata między sąsiednimi ścianami bocznymi tego ostrosłupa.
- Zadanie 4.
W ostrosłupie prawidłowym czworokątnym krawędź boczna tworzy z krawędzią podstawy kąt α. Wyznacz cosinus kąta między sąsiednimi ścianami bocznymi.
- Zadanie 5.
Dany jest prawidłowy ostrosłup trójkątny. Stosunek długości wysokości ostrosłupa do długości krawędzi jego podstawy jest równy
. Wykaż, że kąt między sąsiednimi ścianami bocznymi tego ostrosłupa jest prosty.
- Zadanie 6.
W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość a. Ściany boczne są trójkątami ostrokątnymi. Miara kąta miedzy sąsiednimi ścianami bocznymi jest równa 2α. Wyznacz objętość tego ostrosłupa.
- Zadanie 7.
W ostrosłupie prawidłowym czworokątnym wysokość ma długość H, a kąt między sąsiednimi ścianami bocznymi ma miarę α. Wyznacz objętość tego ostrosłupa.
- Zadanie 1.