fbpx
  • Ostrosłupy

    • Ostrosłup prawidłowy czworokątny

      • Zadanie 1.

        Oblicz objętość ostrosłupa prawidłowego czworokątnego, którego promień okręgu opisanego na podstawie ma długość 4, a wysokość ściany bocznej
        ma długość 6 cm.

      • Zadanie 2.

        Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, którego przekątna podstawy ma długość 2\sqrt{2}, a krawędź boczna ma długość 3.

      • Zadanie 3.

        Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, którego wysokość długości 12 cm i wysokość jego ściany bocznej
        tworzą taki kąt \alpha , że sin\alpha =\frac{5}{13} .

      • Zadanie 4.

        Oblicz objętość ostrosłupa prawidłowego czworokątnego, którego wysokość długości 9 cm i krawędź boczna tworzą taki kąt \alpha, że cos\alpha =\frac{3}{5} .

      • Zadanie 5.

        Oblicz objętość ostrosłupa prawidłowego czworokątnego, którego krawędź boczna tworzy z płaszczyzną podstawy kąt 300, a obwód podstawy wynosi 8.

      • Zadanie 6.

        Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, którego ściana boczna tworzy z płaszczyzną podstawy kąt 600, a promień okręgu wpisanego w podstawę ma długość 8 cm.

      • Zadanie 7.

        Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, którego ściana boczna jest trójkątem równobocznym, a wysokość tego graniastosłupa ma długość 10 cm.

      • Zadanie 8.

        Kąt między wysokościami przeciwległych ścian bocznych ostrosłupa prawidłowego czworokątnego jest równy 600. Oblicz objętość tego ostrosłupa, jeśli długość krawędzi podstawy jest równa 4 cm.

      • Zadanie 9.

        Wysokość ściany bocznej ostrosłupa prawidłowego czworokątnego jest równa 2 cm. Oblicz objętość tego ostrosłupa wiedząc, że jego pole powierzchni całkowitej jest równe 21 cm2.

      • Zadanie 10.

        W ostrosłupie prawidłowym czworokątnym ( rysunek w filmie ) krawędź podstawy ma długość 6, a kąt ASC jest prosty. Oblicz objętość tego ostrosłupa.

    • Ostrosłup prawidłowy trójkątny

      • Zadanie 1.

        W ostrosłupie prawidłowym trójkątnym wysokość jest równa 8 cm, a krawędź boczna 10 cm. Oblicz objętość tego ostrosłupa.

      • Zadanie 2.

        W ostrosłupie prawidłowym trójkątnym wysokość jest równa 8 cm, a wysokość ściany bocznej jest równa 15 cm. Oblicz objętość tego ostrosłupa.

      • Zadanie 3.

        W ostrosłupie prawidłowym trójkątnym jego wysokość i krawędź boczna tworzą taki kąt \alpha , że cos\alpha =\frac{4}{5}. Oblicz pole powierzchni całkowitej tego ostrosłupa wiedząc, że krawędź podstawy ma długość 3 cm .

      • Zadanie 4.

        W ostrosłupie prawidłowym trójkątnym jego wysokość o długości 16 cm i wysokość ściany bocznej tworzą taki kąt \alpha, że cos\alpha =\frac{4}{5}. Oblicz objętość tego ostrosłupa.

      • Zadanie 5.

        Pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego jest siedem razy większe od jego pola podstawy. Wyznacz objętość tego ostrosłupa, jeśli jego krawędź podstawy ma długość 2.

      • Zadanie 6.

        Krawędź podstawy ostrosłupa prawidłowego trójkątnego ma długość 6, a krawędź boczna ma długość 4. Oblicz cosinus kąta nachylenia ściany bocznej tego ostrosłupa do płaszczyzny podstawy.

      • Zadanie 7.

        Wysokość ostrosłupa prawidłowego trójkątnego jest równa 6, a kąt nachylenia krawędzi bocznej do płaszczyzny podstawy wynosi 600. Oblicz wysokość podstawy tego ostrosłupa.

      • Zadanie 8.

        Ściana boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod takim kątem \alpha, że sin\alpha =\frac{3}{5} . Promień okręgu wpisanego w podstawę jest równy 2\sqrt{3} . Wyznacz pole powierzchni całkowitej ostrosłupa.

      • Zadanie 9.

        Ściana boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod takim kątem \alpha, że cos\alpha =\frac{12}{13}. Pole podstawy wynosi 9\sqrt{3}. Wyznacz objętość tego ostrosłupa.

      • Zadanie 10.

        Dany jest ostrosłup prawidłowy trójkątny. Promień okręgu opisanego na podstawie jest równy 24. Krawędź boczna tworzy z płaszczyzną podstawy kąt 600. Oblicz objętość tej bryły.

      • Zadanie 11.

        Dany jest ostrosłup prawidłowy trójkątny. Koło opisane na podstawie ma pole równe 16π. Objętość tego ostrosłupa jest równa 20\sqrt{3} . Oblicz tangens kąta nachylenia ściany bocznej do płaszczyzny podstawy.

      • Zadanie 12.

        Uzasadnij, że wysokość czworościanu foremnego o boku długości a wyraża się wzorem \frac{a\sqrt{6}}{3}.

      • Zadanie 13.

        Oblicz pole powierzchni całkowitej czworościanu foremnego o objętości równej 18\sqrt{2}\, \, cm^{3}

    • Ostrosłup prawidłowy sześciokątny

      • Zadanie 1.

        Dany jest ostrosłup prawidłowy sześciokątny. Krawędź boczna jest nachylona do płaszczyzny podstawy pod katem 600. Suma długości wszystkich krawędzi ostrosłupa jest równa 90. Wyznacz objętość tego ostrosłupa.

      • Zadanie 2.

        Dany jest ostrosłup prawidłowy sześciokątny. Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 300. Krótsza przekątna podstawy wynosi 2\sqrt{3}. Oblicz objętość tego ostrosłupa.

      • Zadanie 3.

        Dany jest ostrosłup prawidłowy sześciokątny. Krawędź boczna jest nachylona do podstawy pod kątem 300. Promień okręgu wpisanego w podstawę ma długość 2\sqrt{3}. Oblicz objętość tego ostrosłupa.

      • Zadanie 4.

        Dany jest ostrosłup prawidłowy sześciokątny. Krawędź boczna jest nachylona do podstawy pod kątem 300. Dłuższa przekątna podstawy ma długość 4. Oblicz pole powierzchni całkowitej tego ostrosłupa.

      • Zadanie 5.

        Dany jest ostrosłup prawidłowy sześciokątny. Wysokość ściany bocznej jest równa 9 cm. Różnica między polem koła opisanego na podstawie tego ostrosłupa, a polem koła wpisanego w podstawę wynosi 8π cm2. Oblicz pole powierzchni całkowitej tego ostrosłupa.

    • Przekroje ostrosłupów

      • Zadanie 1.

        Ostrosłup prawidłowy czworokątny o wysokości 9 cm przecięto płaszczyzną przechodzącą przez jego wierzchołek i przekątną podstawy. Pole przekroju jest równe 36 cm2. Oblicz objętość tego ostrosłupa.

      • Zadanie 2.

        Ostrosłup prawidłowy czworokątny o krawędzi podstawy długości  6 cm przecięto płaszczyzną przechodzącą przez wysokość ściany bocznej i wysokość ostrosłupa. Oblicz pole przekroju wiedząc, że wszystkie ściany boczne są trójkątami równobocznymi.

      • Zadanie 3.

        Ostrosłup prawidłowy czworokątny o krawędzi podstawy długości  6 cm przecięto płaszczyzną przechodzącą przez przekątna podstawy i punkt E będący środkiem krawędzi bocznej. Oblicz pole przekroju wiedząc, że wszystkie ściany boczne są trójkątami równobocznymi.

      • Zadanie 4.

        Czworościan foremny o krawędzi długości 4 przecięto płaszczyzną przechodzącą przez jego wysokość i środek krawędzi podstawy. Oblicz pole przekroju.

      • Zadanie 5.

        Czworościan foremny o krawędzi długości 4 przecięto płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej krawędzi bocznej. Oblicz pole przekroju.

    • Przekroje ostrosłupów (2)

      • Zadanie 1.

        Dany jest ostrosłup prawidłowy trójkątny, w którym pole podstawy jest równe 18\sqrt{3} cm2, zaś krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem α=60°. Oblicz pole przekroju tego ostrosłupa płaszczyzną zawierającą wysokość podstawy i wierzchołek.

      • Zadanie 2.

        W ostrosłupie prawidłowym czworokątnym kąt ostry ściany bocznej przy wierzchołku ostrosłupa ma miarę α. Oblicz tangens kąta ostrego β, jaki tworzy z płaszczyzną podstawy płaszczyzna przechodząca przez wierzchołek ostrosłupa oraz przez środki dwóch sąsiednich boków podstawy.

      • Zadanie 3.

        Pole przekroju ostrosłupa prawidłowego trójkątnego przeciętego płaszczyzną przechodząca przez krawędź boczną i wysokość ostrosłupa, jest równe S. Ściana boczna ostrosłupa tworzy z płaszczyzną podstawy kąt α. Oblicz objętość ostrosłupa.

      • Zadanie 4.

        Dany jest ostrosłup prawidłowy czworokątny. Krawędź podstawy ostrosłupa ma długość a. Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 3α. Ostrosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i nachyloną do płaszczyzny podstawy pod kątem α. Oblicz pole otrzymanego przekroju.

      • Zadanie 5.

        Dany jest ostrosłup prawidłowy trójkątny. Długość krawędzi podstawy ostrosłupa jest równa a, krawędź boczna jest nachylona do płaszczyzny jego podstawy pod kątem α. Ostrosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej krawędzi bocznej.
        a) Oblicz pole otrzymanego przekroju.
        b) Wyznacz sinus kąta nachylenia płaszczyzny przekroju do płaszczyzny podstawy ostrosłupa.

      • Zadanie 6.

        Ostrosłup prawidłowy trójkątny o krawędzi podstawy długości a i wysokości H, przecięto płaszczyzną prostopadłą do podstawy i przechodzącą przez środki dwóch krawędzi podstawy. Oblicz pole przekroju.

      • Zadanie 7.

        W ostrosłupie , którego podstawą jest prostokątny trójkąt równoramienny o przyprostokątnej 5, jedna z krawędzi bocznych jest prostopadła do płaszczyzny podstawy, a dwie pozostałe tworzą z tą płaszczyzną kąt α taki, że sin\alpha =\frac{\sqrt{3}}{3}. Przekrój tego ostrosłupa płaszczyzną prostopadłą do podstawy jest kwadratem. Oblicz pole tego kwadratu.

    • Inne ostrosłupy

      • Zadanie 1.

        Podstawą ostrosłupa ABCS jest trójkąt równoboczny ABC o boku długości 8. Punk D jest środkiem krawędzi AB, a odcinek DS jest wysokością ostrosłupa. Krawędzie AS i BS mają długość 7. Oblicz długość krawędzi CS.

      • Zadanie 2.

        Podstawą ostrosłupa ABCD jest trójkąt ABC. Krawędź AD jest wysokością ostrosłupa ( rysunek w filmie ). Oblicz objętość ostrosłupa ABCD, jeśli wiadomo, że |AD|=12, |BC|=6, |BD|=|CD|=13.

      • Zadanie 3.

        Podstawą ostrosłupa ABCS jest trójkąt prostokątny równoramienny ABC o ramionach AC, BC. Krawędź boczna SC jest wysokością tego ostrosłupa. Objętość ostrosłupa jest równa \frac{80}{3} , a pole ściany bocznej BCS jest równe 20. Wyznacz długość krawędzi AC i SC ostrosłupa.

      • Zadanie 4.

        Podstawą ostrosłupa ABCS jest trójkąt ABC o bokach długości 8, 6, 4. Długość wysokości ostrosłupa jest równa połowie obwodu podstawy. Oblicz objętość tego ostrosłupa.

      • Zadanie 5.

        Podstawą ostrosłupa jest prostokąt o bokach długości 10 i 4. Krawędzie boczne mają długości równe długości przekątnej podstawy. Oblicz objętość tego ostrosłupa.

    • Kąt dwuścienny

      • Zadanie 1.

        Oblicz objętość ostrosłupa prawidłowego czworokątnego, którego długość krawędzi podstawy jest równa 6, a kąt miedzy dwiema sąsiednimi ścianami bocznymi ma miarę 120°.

      • Zadanie 2.

        W ostrosłupie prawidłowym trójkątnym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy. Oblicz cosinus kąta utworzonego przez dwie sąsiednie ściany boczne.

      • Zadanie 3.

        Dany jest ostrosłup prawidłowy sześciokątny. Krawędź boczna jest dwa razy dłuższa od krawędzi jego podstawy. Wyznacz cosinus kata między sąsiednimi ścianami bocznymi tego ostrosłupa.

      • Zadanie 4.

        W ostrosłupie prawidłowym czworokątnym krawędź boczna tworzy z krawędzią podstawy kąt α. Wyznacz cosinus kąta między sąsiednimi ścianami bocznymi.

      • Zadanie 5.

        Dany jest prawidłowy ostrosłup trójkątny. Stosunek długości wysokości ostrosłupa do długości krawędzi jego podstawy jest równy \frac{\sqrt{6}}{6}. Wykaż, że kąt między sąsiednimi ścianami bocznymi tego ostrosłupa jest prosty.

      • Zadanie 6.

        W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość a. Ściany boczne są trójkątami ostrokątnymi. Miara kąta miedzy sąsiednimi ścianami bocznymi jest równa 2α. Wyznacz objętość tego ostrosłupa.

      • Zadanie 7.

        W ostrosłupie prawidłowym czworokątnym wysokość ma długość H, a kąt między sąsiednimi ścianami bocznymi ma miarę α. Wyznacz objętość tego ostrosłupa.

    • Twierdzenie o ostroslupach

      • Zadanie 1.

        Podstawą ostrosłupa jest równoramienny trójkąt prostokątny. Każda krawędź boczna ma długość d i jest nachylona do płaszczyzny podstawy pod kątem α. Oblicz objętość ostrosłupa.

      • Zadanie 2.

        Podstawą ostrosłupa jest trójkąt o bokach długości  6, 5 i 5. Wszystkie krawędzie boczne ostrosłupa są nachylone do płaszczyzny podstawy pod kątem 45°. Oblicz objętość tego ostrosłupa.

      • Zadanie 3.

        Podstawą ostrosłupa jest trapez równoramienny, którego dłuższa podstawa ma długość 10 cm. Przekątna tego trapezu jest prostopadła do ramienia i ma 8 cm długości, a wszystkie krawędzie boczne ostrosłupa mają po 13 cm długości. Oblicz objętość ostrosłupa.

      • Zadanie 4.

        Podstawą ostrosłupa jest trójkąt o bokach długości  6, 5 i 5. Wszystkie ściany boczne ostrosłupa są nachylone do płaszczyzny podstawy pod kątem 45°. Oblicz objętość tego ostrosłupa.

    • Zadania różne

      • Zadanie 1.

        Oblicz pole powierzchni kuli wpisanej w ostrosłup prawidłowy czworokątny wiedząc, że kąt między ścianą boczną i płaszczyzną podstawy tego ostrosłupa ma miarę α, zaś wysokość ostrosłupa ma długość H.

      • Zadanie 2.

        Oblicz objętość ostrosłupa prawidłowego trójkątnego wpisanego w kulę o promieniu długości R wiedząc, że krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem α.

      • Zadanie 3.

        Podstawą ostrosłupa jest romb, którego kąt ostry ma miarę 30°. Ściany boczne są nachylone do płaszczyzny postawy pod kątem α=60°. Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa, jeśli promień okręgu wpisanego w romb ma długość r.

      • Zadanie 4.

        Podstawą ostrosłupa jest prostokąt o bokach długości 1 i 2. Wysokość ostrosłupa ma długość 3, a jej spodek znajduje się w punkcie przecięcia przekątnych podstawy. Oblicz promień kuli opisanej na tym ostrosłupie.

      • Zadanie 5.

        W prawidłowym ostrosłupie czworokątnym kąt płaski przy wierzchołku ostrosłupa jest równy α, zaś krawędź podstawy ma długość α. Oblicz promień kuli opisanej na tym ostrosłupie.

      • Zadanie 6.

        Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD. W trójkącie równoramiennym ASC stosunek długości przekątnej podstawy AC do długości ramienia AS jest równy |AC|:|AS|=6:5. Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

      • Zadanie 7.

        Sześcian o krawędzi α wpisano w ostrosłup prawidłowy czworokątny tak, że cztery jego wierzchołki należą do krawędzi bocznych, zaś cztery pozostałe do podstawy. Oblicz objętość tego ostrosłupa, wiedząc, że jego krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem α.