fbpx
  • Wszystkie filmy: Inne graniastosłupy

    • Zadanie 1.

      Podstawą graniastosłupa prostego jest trójkąt równoramienny o jednym z kątów 1200 i ramionach długości 8 cm. Oblicz pole powierzchni bocznej tego graniastosłupa, jeżeli jego wysokość jest równa 11 cm.

    • Zadanie 2.

      Podstawą graniastosłupa prostego jest romb o kącie ostrym 300 i boku długości 12 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli jego wysokość jest równa 8 cm.

    • Zadanie 3.

      Podstawą graniastosłupa prostego jest trapez równoramienny o bokach długości : 12 cm, 5 cm, 6 cm, 5 cm. Oblicz wysokość tego graniastosłupa, jeśli pole powierzchni całkowitej tego graniastosłupa jest równe 492 cm2, następnie oblicz objętość tego graniastosłupa.

    • Zadanie 4.

      Podstawą graniastosłupa prostego jest romb o kącie ostrym \alpha. Wszystkie krawędzie tego graniastosłupa mają długość a . Uzasadnij, że krótsza przekątna tego graniastosłupa ma długość równą a\sqrt{1+4sin^{2}\frac{\alpha }{2}}

    • Zadanie 5.

      Cztery ściany graniastosłupa pochyłego są kwadratami o boku długości 5 cm, a odcinek EP jest jego wysokością ( rysunek w filmie ). Ściany boczne ABFE i DCGH są rombami o kącie ostrym \alpha takim, że sinα = 0,7. Oblicz objętość tego graniastosłupa.