fbpx
  • Wszystkie filmy: Zadania różne

    • Zadanie 1.

      Oblicz pole powierzchni kuli wpisanej w ostrosłup prawidłowy czworokątny wiedząc, że kąt między ścianą boczną i płaszczyzną podstawy tego ostrosłupa ma miarę α, zaś wysokość ostrosłupa ma długość H.

    • Zadanie 2.

      Oblicz objętość ostrosłupa prawidłowego trójkątnego wpisanego w kulę o promieniu długości R wiedząc, że krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem α.

    • Zadanie 3.

      Podstawą ostrosłupa jest romb, którego kąt ostry ma miarę 30°. Ściany boczne są nachylone do płaszczyzny postawy pod kątem α=60°. Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa, jeśli promień okręgu wpisanego w romb ma długość r.

    • Zadanie 4.

      Podstawą ostrosłupa jest prostokąt o bokach długości 1 i 2. Wysokość ostrosłupa ma długość 3, a jej spodek znajduje się w punkcie przecięcia przekątnych podstawy. Oblicz promień kuli opisanej na tym ostrosłupie.

    • Zadanie 5.

      W prawidłowym ostrosłupie czworokątnym kąt płaski przy wierzchołku ostrosłupa jest równy α, zaś krawędź podstawy ma długość α. Oblicz promień kuli opisanej na tym ostrosłupie.

    • Zadanie 6.

      Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD. W trójkącie równoramiennym ASC stosunek długości przekątnej podstawy AC do długości ramienia AS jest równy |AC|:|AS|=6:5. Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

    • Zadanie 7.

      Sześcian o krawędzi α wpisano w ostrosłup prawidłowy czworokątny tak, że cztery jego wierzchołki należą do krawędzi bocznych, zaś cztery pozostałe do podstawy. Oblicz objętość tego ostrosłupa, wiedząc, że jego krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem α.