Zadanie 5.

  • Wszystkie filmy: Pole trójkąta

    • Zadanie 1.

      Udowodnij wzór na pole trójkąta równobocznego o boku długości a, P_{\Delta }=\frac{a^{2}\sqrt{3}}{4} . Wyznacz obwód  trójkąta równobocznego, jeżeli jego pole wynosi 4\sqrt{3} .

    • Zadanie 2.

      Wyprowadź wzór na pole trójkąta P_{\bigtriangleup }=\frac{1}{2} a bsin\alpha , gdzie a,b są długościami boków trójkąta i kąt \alpha jest kątem zawartym między tymi bokami. Oblicz pole trójkąta ABC, w którym \left | AB \right |=4\sqrt{3},\left | AC \right |=\sqrt{3},\left | \measuredangle ABC \right |=35^{0}\left | \measuredangle ACB \right |=100^{0}

    • Zadanie 3.

      Obwód trójkąta równoramiennego ABC ( rysunek w filmie) jest równy (12+8\sqrt{3}) cm. Punkt P jest środkiem odcinka BC, a punkt R dzieli odcinek AB w stosunku 3:2Oblicz pole trójkąta a) APC b) ARC

    • Zadanie 4.

      W trójkącie równoramiennym o polu 12\sqrt{3} cm^{2} stosunek długości wysokości opuszczonej na podstawę do długości tej podstawy jest równy \frac{\sqrt{3}}{6} .
      Oblicz miary kątów \bigtriangleup.

    • Zadanie 5.

      Zastosuj wzór Herona, na pole trójkąta o bokach długości a,b,c, P_{\bigtriangleup }=\sqrt{p\left ( p-a \right )\left ( p-b \right )\left ( p-c \right )}  , gdzie p=\frac{a+b+c}{2} ( połowa obwodu trójkąta ). Oblicz pole trójkąta o bokach długości 4,7,5.

    • Zadanie 6.

      Dany jest trójkąt, w którym kąt między bokami o długościach x i 2x ma miarę 120^{0}. Uzasadnij, ze pole tego trójkąta jest dwukrotnie większe od pola trójkąta równobocznego o boku długości x.

    • Zadanie 7.

      Dany jest trójkąt równoramienny o podstawie równej a i kącie przy podstawie 15^{0}. Uzasadnij, że jeśli wysokość opuszczona na podstawę równa się h, to ramię tego trójkąta ma długość \sqrt{2ah}