fbpx
  • Stereometria

    Zagadnienia ze stereometrii, czyli z geometrii przestrzennej, przedstawiamy wykorzystując wiedzę z planimetrii przedstawioną już wcześniej w naszych korepetycjach video. Jeżeli zagadnienia z geometrii płaskiej nie są Ci obce, szybko opanujesz kolejne zagadnienia z geometrii przestrzennej, poznając określone prawidłowości potrzebne do obliczania pól powierzchni, objętości graniastosłupów, ostrosłupów, walców, stożków, kul i innych brył.

    • Graniastosłupy

      • Sześcian

        • Zadanie 1.

          Pole sześcianu jest równe 216 cm2. Oblicz objętość tego sześcianu, oraz sinus kąta nachylenia przekątnej tego sześcianu do płaszczyzny podstawy.

        • Zadanie 2.

          Objętość sześcianu jest równa 64 cm3. Oblicz pole powierzchni całkowitej tego sześcianu, oraz cosinus kąta nachylenia przekątnej tego sześcianu do płaszczyzny podstawy.

        • Zadanie 3.

          Oblicz pole powierzchni całkowitej i objętość sześcianu, którego przekątna jest o 2 dłuższa od jego krawędzi.

        • Zadanie 4.

          Punkty K, L, M są środkami krawędzi BC, GH i AE sześcianu ABCDEFGH o krawędzi długości 1 ( rysunek w filmie ). Oblicz pole trójkąta KLM.

        • Zadanie 5.

          Sześcian o krawędzi 4 cm przecięto płaszczyzną wyznaczoną przez równoległe przekątne podstaw. Oblicz pole otrzymanego przekroju.

        • Zadanie 6.

          Sześcian o krawędzi a przecięto płaszczyzną przechodząca przez krawędź dolnej podstawy. Płaszczyzna ta tworzy z podstawą kąt \alpha taki, że cos\alpha =\frac{4}{5} . Oblicz pole otrzymanego przekroju.

        • Zadanie 7.

          Sześcian o krawędzi a przecięto płaszczyzną przechodząca przez krawędź dolnej podstawy (rysunek w filmie). Płaszczyzna ta tworzy z podstawą kąt \alpha taki, że cos\alpha =\frac{4}{5} . Oblicz pole otrzymanego przekroju.

        • Zadanie 8.

          Sześcian o krawędzi długości 4 cm przecięto płaszczyzną przechodzącą przez przekątną BD dolnej podstawy i wierzchołek C’ górnej podstawy ( rysunek w filmie ). Oblicz pole otrzymanego przekroju.

        • Zadanie 9.

          Sześcian o krawędzi długości 4 cm przecięto płaszczyzną przechodzącą przez środki sąsiednich krawędzi CD i BC i wierzchołek C’ górnej podstawy ( rysunek w filmie ). Oblicz pole otrzymanego przekroju.

      • Prostopadłościan

        • Zadanie 1.

          Oblicz pole powierzchni całkowitej oraz objętość  prostopadłościanu o wymiarach 6 cm, 15 cm, 20 cm.

        • Zadanie 2.

          Oblicz pole powierzchni całkowitej oraz objętość  prostopadłościanu o przekątnej długości 10 cm i krawędziach podstawy długości 4 cm i 5 cm.

        • Zadanie 3.

          Oblicz pole powierzchni całkowitej oraz objętość  prostopadłościanu o przekątnej długości 8 cm tworzącej z płaszczyzną podstawy kąt 300 wiedząc, że jedna z krawędzi podstawy ma długość 4 cm.

        • Zadanie 4.

          Oblicz pole powierzchni całkowitej oraz objętość  prostopadłościanu wiedząc, że jego przekątna tworzy z płaszczyzną podstawy kąt 60o, a długości podstaw to 5 cm i 7 cm.

        • Zadanie 5.

          Przekątne ścian wychodzące z tego samego wierzchołka prostopadłościanu mają długość 10,6\sqrt{17},8\sqrt{10} . Oblicz długość przekątnej tego prostopadłościanu.

        • Zadanie 6.

          Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu wychodzących z tego samego wierzchołka prostopadłościanu to 1:2:3. Oblicz długość przekątnej tego prostopadłościanu.

      • Graniastosłup prawidłowy czworokątny

        • Zadanie 1.

          Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 5 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli przekątna jego ściany bocznej tworzy z krawędzią podstawy kąt 300.

        • Zadanie 2.

          Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 5 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli przekątna jego ściany bocznej tworzy z krawędzią boczną kąt 300.

        • Zadanie 3.

          Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 5 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli przekątna jego ściany bocznej tworzy z przekątną graniastosłupa kąt 300.

        • Zadanie 4.

          Kąt między przekątnymi sąsiednich ścian bocznych graniastosłupa prawidłowego czworokątnego jest równy 600 ( rysunek w filmie ). Wykaż, że taki graniastosłup jest sześcianem.

        • Zadanie 5.

          Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 4 cm. Oblicz długość przekątnej tego graniastosłupa, jeśli tworzy ona z przekątną podstawy kat 300.

        • Zadanie 6.

          Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 4 cm. Oblicz długość przekątnej tego graniastosłupa, jeśli tworzy ona z przekątną jednej ze ścian bocznych kąt 300.

        • Zadanie 7.

          Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego jest trzy razy większe od jego pola powierzchni bocznej. Oblicz cosinus kąta zawartego między przekątną tego graniastosłupa, a jego krawędzią boczną.

        • Zadanie 8.

          Pole podstawy graniastosłupa prawidłowego czworokątnego jest równe 16 cm2. Oblicz objętość tego graniastosłupa, jeśli jego przekątna ma długość 9 cm.

        • Zadanie 9.

          Pole powierzchni bocznej graniastosłupa prawidłowego czworokątnego jest równe 48\sqrt{3} cm2. Przekątna ściany bocznej tworzy z krawędzią boczną kąt 300. Oblicz długość tej przekątnej oraz objętość tego graniastosłupa.

        • Zadanie 10.

          Przekątna graniastosłupa prawidłowego czworokątnego ma długość d , a sinus kąta między tą przekątną, a krawędzią podstawy jest równy p. Wykaż, że wysokość tego graniastosłupa wyraża się wzorem d\sqrt{2p^{2}-1} 

        • Zadanie 11.

          W graniastosłupie prawidłowym czworokątnym sinus kąta między przekątną podstawy a przekątną ściany bocznej wychodzącymi z tego samego wierzchołka jest równy \frac{4}{5} . Oblicz objętość i pole powierzchni całkowitej tego graniastosłupa, jeśli przekątna jego ściany bocznej ma długość 5.

      • Graniastosłup prawidłowy trójkątny

        • Zadanie 1.

          Przekątna ściany bocznej graniastosłupa prawidłowego trójkątnego tworzy z krawędzią podstawy kąt . Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli cos\alpha =\frac{1}{3} i krawędź boczna ma długość 6 cm.

        • Zadanie 2.

          Wysokość graniastosłupa prawidłowego trójkątnego jest równa 8, a jego objętość wynosi 32\sqrt{3} . Oblicz długość krawędzi podstawy tego graniastosłupa i pole powierzchni całkowitej.

        • Zadanie 3.

          Przekątna ściany bocznej graniastosłupa prawidłowego trójkątnego tworzy z krawędzią podstawy kąt 300. Oblicz pole powierzchni bocznej tego graniastosłupa, jeżeli pole podstawy tego graniastosłupa wynosi \frac{9\sqrt{3}}{4} .

        • Zadanie 4.

          Przekątna ściany bocznej graniastosłupa prawidłowego trójkątnego ma długość 10. Oblicz objętość i pole powierzchni całkowitej tego graniastosłupa, jeżeli promień okręgu opisanego na podstawie jest równy \sqrt{3} .

        • Zadanie 5.

          W graniastosłupie prawidłowym trójkątnym o krawędzi  podstawy długości 1 promień okręgu opisanego na ścianie bocznej jest czterokrotnie  większy od promienia okręgu wpisanego w podstawę. Oblicz objętość tego graniastosłupa.

      • Graniastosłup prawidłowy sześciokątny

        • Zadanie 1.

          Dłuższa przekątna podstawy graniastosłupa prawidłowego sześciokątnego ma długość 4. Dłuższa przekątna tego graniastosłupa tworzy z płaszczyzną podstawy kąt 300. Oblicz objętość tego graniastosłupa.

        • Zadanie 2.

          Krótsza przekątna podstawy graniastosłupa prawidłowego sześciokątnego ma długość \sqrt{3}, a jego wysokość jest równa 4.Oblicz objętość i długości przekątnych tego graniastosłupa.

        • Zadanie 3.

          Krótsza przekątna graniastosłupa prawidłowego sześciokątnego ma długość 4\sqrt{3}. Wysokość graniastosłupa jest trzy razy dłuższa od krawędzi podstawy. Oblicz objętość tego graniastosłupa.

        • Zadanie 4.

          Dłuższa przekątna graniastosłupa prawidłowego sześciokątnego tworzy z płaszczyzną podstawy kąt 600 . Krótsza przekątna podstawy tego graniastosłupa jest równa 2\sqrt{3}. Oblicz pole powierzchni całkowitej tego graniastosłupa.

      • Inne graniastosłupy

        • Zadanie 1.

          Podstawą graniastosłupa prostego jest trójkąt równoramienny o jednym z kątów 1200 i ramionach długości 8 cm. Oblicz pole powierzchni bocznej tego graniastosłupa, jeżeli jego wysokość jest równa 11 cm.

        • Zadanie 2.

          Podstawą graniastosłupa prostego jest romb o kącie ostrym 300 i boku długości 12 cm. Oblicz pole powierzchni całkowitej tego graniastosłupa, jeśli jego wysokość jest równa 8 cm.

        • Zadanie 3.

          Podstawą graniastosłupa prostego jest trapez równoramienny o bokach długości : 12 cm, 5 cm, 6 cm, 5 cm. Oblicz wysokość tego graniastosłupa, jeśli pole powierzchni całkowitej tego graniastosłupa jest równe 492 cm2, następnie oblicz objętość tego graniastosłupa.

        • Zadanie 4.

          Podstawą graniastosłupa prostego jest romb o kącie ostrym \alpha. Wszystkie krawędzie tego graniastosłupa mają długość a . Uzasadnij, że krótsza przekątna tego graniastosłupa ma długość równą a\sqrt{1+4sin^{2}\frac{\alpha }{2}}

        • Zadanie 5.

          Cztery ściany graniastosłupa pochyłego są kwadratami o boku długości 5 cm, a odcinek EP jest jego wysokością ( rysunek w filmie ). Ściany boczne ABFE i DCGH są rombami o kącie ostrym \alpha takim, że sinα = 0,7. Oblicz objętość tego graniastosłupa.

    • Ostrosłupy

      • Ostrosłup prawidłowy czworokątny

        • Zadanie 1.

          Oblicz objętość ostrosłupa prawidłowego czworokątnego, którego promień okręgu opisanego na podstawie ma długość 4, a wysokość ściany bocznej
          ma długość 6 cm.

        • Zadanie 2.

          Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, którego przekątna podstawy ma długość 2\sqrt{2}, a krawędź boczna ma długość 3.

        • Zadanie 3.

          Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, którego wysokość długości 12 cm i wysokość jego ściany bocznej
          tworzą taki kąt \alpha , że sin\alpha =\frac{5}{13} .

        • Zadanie 4.

          Oblicz objętość ostrosłupa prawidłowego czworokątnego, którego wysokość długości 9 cm i krawędź boczna tworzą taki kąt \alpha, że cos\alpha =\frac{3}{5} .

        • Zadanie 5.

          Oblicz objętość ostrosłupa prawidłowego czworokątnego, którego krawędź boczna tworzy z płaszczyzną podstawy kąt 300, a obwód podstawy wynosi 8.

        • Zadanie 6.

          Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, którego ściana boczna tworzy z płaszczyzną podstawy kąt 600, a promień okręgu wpisanego w podstawę ma długość 8 cm.

        • Zadanie 7.

          Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, którego ściana boczna jest trójkątem równobocznym, a wysokość tego graniastosłupa ma długość 10 cm.

        • Zadanie 8.

          Kąt między wysokościami przeciwległych ścian bocznych ostrosłupa prawidłowego czworokątnego jest równy 600. Oblicz objętość tego ostrosłupa, jeśli długość krawędzi podstawy jest równa 4 cm.

        • Zadanie 9.

          Wysokość ściany bocznej ostrosłupa prawidłowego czworokątnego jest równa 2 cm. Oblicz objętość tego ostrosłupa wiedząc, że jego pole powierzchni całkowitej jest równe 21 cm2.

        • Zadanie 10.

          W ostrosłupie prawidłowym czworokątnym ( rysunek w filmie ) krawędź podstawy ma długość 6, a kąt ASC jest prosty. Oblicz objętość tego ostrosłupa.

      • Ostrosłup prawidłowy trójkątny

        • Zadanie 1.

          W ostrosłupie prawidłowym trójkątnym wysokość jest równa 8 cm, a krawędź boczna 10 cm. Oblicz objętość tego ostrosłupa.

        • Zadanie 2.

          W ostrosłupie prawidłowym trójkątnym wysokość jest równa 8 cm, a wysokość ściany bocznej jest równa 15 cm. Oblicz objętość tego ostrosłupa.

        • Zadanie 3.

          W ostrosłupie prawidłowym trójkątnym jego wysokość i krawędź boczna tworzą taki kąt \alpha , że cos\alpha =\frac{4}{5}. Oblicz pole powierzchni całkowitej tego ostrosłupa wiedząc, że krawędź podstawy ma długość 3 cm .

        • Zadanie 4.

          W ostrosłupie prawidłowym trójkątnym jego wysokość o długości 16 cm i wysokość ściany bocznej tworzą taki kąt \alpha, że cos\alpha =\frac{4}{5}. Oblicz objętość tego ostrosłupa.

        • Zadanie 5.

          Pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego jest siedem razy większe od jego pola podstawy. Wyznacz objętość tego ostrosłupa, jeśli jego krawędź podstawy ma długość 2.

        • Zadanie 6.

          Krawędź podstawy ostrosłupa prawidłowego trójkątnego ma długość 6, a krawędź boczna ma długość 4. Oblicz cosinus kąta nachylenia ściany bocznej tego ostrosłupa do płaszczyzny podstawy.

        • Zadanie 7.

          Wysokość ostrosłupa prawidłowego trójkątnego jest równa 6, a kąt nachylenia krawędzi bocznej do płaszczyzny podstawy wynosi 600. Oblicz wysokość podstawy tego ostrosłupa.

        • Zadanie 8.

          Ściana boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod takim kątem \alpha, że sin\alpha =\frac{3}{5} . Promień okręgu wpisanego w podstawę jest równy 2\sqrt{3} . Wyznacz pole powierzchni całkowitej ostrosłupa.

        • Zadanie 9.

          Ściana boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod takim kątem \alpha, że cos\alpha =\frac{12}{13}. Pole podstawy wynosi 9\sqrt{3}. Wyznacz objętość tego ostrosłupa.

        • Zadanie 10.

          Dany jest ostrosłup prawidłowy trójkątny. Promień okręgu opisanego na podstawie jest równy 24. Krawędź boczna tworzy z płaszczyzną podstawy kąt 600. Oblicz objętość tej bryły.

        • Zadanie 11.

          Dany jest ostrosłup prawidłowy trójkątny. Koło opisane na podstawie ma pole równe 16π. Objętość tego ostrosłupa jest równa 20\sqrt{3} . Oblicz tangens kąta nachylenia ściany bocznej do płaszczyzny podstawy.

        • Zadanie 12.

          Uzasadnij, że wysokość czworościanu foremnego o boku długości a wyraża się wzorem \frac{a\sqrt{6}}{3}.

        • Zadanie 13.

          Oblicz pole powierzchni całkowitej czworościanu foremnego o objętości równej 18\sqrt{2}\, \, cm^{3}

      • Ostrosłup prawidłowy sześciokątny

        • Zadanie 1.

          Dany jest ostrosłup prawidłowy sześciokątny. Krawędź boczna jest nachylona do płaszczyzny podstawy pod katem 600. Suma długości wszystkich krawędzi ostrosłupa jest równa 90. Wyznacz objętość tego ostrosłupa.

        • Zadanie 2.

          Dany jest ostrosłup prawidłowy sześciokątny. Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 300. Krótsza przekątna podstawy wynosi 2\sqrt{3}. Oblicz objętość tego ostrosłupa.

        • Zadanie 3.

          Dany jest ostrosłup prawidłowy sześciokątny. Krawędź boczna jest nachylona do podstawy pod kątem 300. Promień okręgu wpisanego w podstawę ma długość 2\sqrt{3}. Oblicz objętość tego ostrosłupa.

        • Zadanie 4.

          Dany jest ostrosłup prawidłowy sześciokątny. Krawędź boczna jest nachylona do podstawy pod kątem 300. Dłuższa przekątna podstawy ma długość 4. Oblicz pole powierzchni całkowitej tego ostrosłupa.

        • Zadanie 5.

          Dany jest ostrosłup prawidłowy sześciokątny. Wysokość ściany bocznej jest równa 9 cm. Różnica między polem koła opisanego na podstawie tego ostrosłupa, a polem koła wpisanego w podstawę wynosi 8π cm2. Oblicz pole powierzchni całkowitej tego ostrosłupa.

      • Przekroje ostrosłupów

        • Zadanie 1.

          Ostrosłup prawidłowy czworokątny o wysokości 9 cm przecięto płaszczyzną przechodzącą przez jego wierzchołek i przekątną podstawy. Pole przekroju jest równe 36 cm2. Oblicz objętość tego ostrosłupa.

        • Zadanie 2.

          Ostrosłup prawidłowy czworokątny o krawędzi podstawy długości  6 cm przecięto płaszczyzną przechodzącą przez wysokość ściany bocznej i wysokość ostrosłupa. Oblicz pole przekroju wiedząc, że wszystkie ściany boczne są trójkątami równobocznymi.

        • Zadanie 3.

          Ostrosłup prawidłowy czworokątny o krawędzi podstawy długości  6 cm przecięto płaszczyzną przechodzącą przez przekątna podstawy i punkt E będący środkiem krawędzi bocznej. Oblicz pole przekroju wiedząc, że wszystkie ściany boczne są trójkątami równobocznymi.

        • Zadanie 4.

          Czworościan foremny o krawędzi długości 4 przecięto płaszczyzną przechodzącą przez jego wysokość i środek krawędzi podstawy. Oblicz pole przekroju.

        • Zadanie 5.

          Czworościan foremny o krawędzi długości 4 przecięto płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej krawędzi bocznej. Oblicz pole przekroju.

      • Inne ostrosłupy

        • Zadanie 1.

          Podstawą ostrosłupa ABCS jest trójkąt równoboczny ABC o boku długości 8. Punk D jest środkiem krawędzi AB, a odcinek DS jest wysokością ostrosłupa. Krawędzie AS i BS mają długość 7. Oblicz długość krawędzi CS.

        • Zadanie 2.

          Podstawą ostrosłupa ABCD jest trójkąt ABC. Krawędź AD jest wysokością ostrosłupa ( rysunek w filmie ). Oblicz objętość ostrosłupa ABCD, jeśli wiadomo, że |AD|=12, |BC|=6, |BD|=|CD|=13.

        • Zadanie 3.

          Podstawą ostrosłupa ABCS jest trójkąt prostokątny równoramienny ABC o ramionach AC, BC. Krawędź boczna SC jest wysokością tego ostrosłupa. Objętość ostrosłupa jest równa \frac{80}{3} , a pole ściany bocznej BCS jest równe 20. Wyznacz długość krawędzi AC i SC ostrosłupa.

        • Zadanie 4.

          Podstawą ostrosłupa ABCS jest trójkąt ABC o bokach długości 8, 6, 4. Długość wysokości ostrosłupa jest równa połowie obwodu podstawy. Oblicz objętość tego ostrosłupa.

        • Zadanie 5.

          Podstawą ostrosłupa jest prostokąt o bokach długości 10 i 4. Krawędzie boczne mają długości równe długości przekątnej podstawy. Oblicz objętość tego ostrosłupa.

    • Walec

      • Zadanie 1.

        Pole powierzchni całkowitej walca jest równe  40π cm2, a jego wysokość ma długość 10 cm. Oblicz pole koła będącego podstawą walca.

      • Zadanie 2.

        Oblicz pole powierzchni całkowitej walca o promieniu podstawy 4 cm, jeśli pole jego przekroju osiowego jest równe 40 cm2.

      • Zadanie 3.

        Przekątna d prostokąta będącego przekrojem osiowym walca ma długość 12 cm i tworzy z jego podstawą kąt α = 30° Oblicz pole powierzchni całkowitej tego walca.

      • Zadanie 4.

        Średnica podstawy walca ma długość 8 cm, a pole jego powierzchni bocznej jest czterokrotnie większe od pola podstawy. Oblicz objętość walca.

      • Zadanie 5.

        Przekątna przekroju osiowego walca ma długość 15 cm i tworzy z jego podstawą kąt α. Oblicz objętość walca, jeśli wiadomo, że cosα = 0,6.

      • Zadanie 6.

        Pole powierzchni całkowitej walca jest dwa razy większe od jego pola powierzchni bocznej. Oblicz średnicę podstawy tego walca, jeśli jego objętość wynosi 27π

      • Zadanie 7.

        Oblicz objętość walca, którego przekrojem osiowym jest kwadrat o przekątnej 4.

      • Zadanie 8.

        Powierzchnia boczna walca po rozwinięciu na płaszczyznę jest prostokątem. Przekątna tego prostokąta ma długość 12 i tworzy kąt o mierze 300 z bokiem, którego długość jest równa wysokości walca. Oblicz pole powierzchni bocznej tego walca i jego objętość.

      • Zadanie 9.

        Objętość walca jest równa 75π. Przekątna przekroju osiowego walca jest nachylona do płaszczyzny podstawy pod kątem, którego tangens jest równy 0,3. Oblicz pole powierzchni całkowitej tego walca.

      • Zadanie 10.

        Przekątna prostokąta ma długość 4 i tworzy z dłuższym bokiem kąt 300. Oblicz objętość bryły powstałej w wyniku obrotu tego prostokąta dookoła dłuższego boku.

    • Stożek

      • Zadanie 1.

        Wyznacz kąt rozwarcia stożka, którego tworząca ma długość 10 cm, a pole podstawy jest równe 25π cm2.

      • Zadanie 2.

        Przekrój osiowy stożka jest trójkątem równobocznym o polu równym 16\sqrt{3} cm2. Oblicz objętość tego stożka.

      • Zadanie 3.

        Pole podstawy stożka jest równe 27π cm2, a jego objętość wynosi 27π cm3. Wyznacz kąt między tworzącą stożka a jego podstawą.

      • Zadanie 4.

        W stożku tworząca długości 15 cm, tworzy z płaszczyzną podstawy taki kąt α, którego sinα = 0,6. Oblicz pole powierzchni całkowitej tego stożka.

      • Zadanie 5.

        W stożku tworząca długości 13 cm tworzy z płaszczyzną podstawy taki kąt α, którego tgα = 2,4. Oblicz objętość tego stożka.

      • Zadanie 6.

        Pole powierzchni bocznej stożka jest dwukrotnie większe od pola podstawy. Wyznacz miarę kąta rozwarcia stożka.

      • Zadanie 7.

        Dany jest stożek o polu powierzchni bocznej 2\pi \sqrt{2}\, \, cm^{2} i polu powierzchni całkowitej \frac{2\pi }{\sqrt{2}-1}\, \, cm^{2} . Wyznacz kąt między tworząca tego stożka a jego podstawą.

      • Zadanie 8.

        Na rysunku w filmie przedstawiono wycinek koła, który po zwinięciu jest powierzchnią boczną stożka. Oblicz pole podstawy i pole powierzchni całkowitej tego stożka.

      • Zadanie 9.

        Powierzchnia boczna stożka po rozwinięciu jest wycinkiem koła o kącie \alpha i promieniu 9 cm. Oblicz miarę kąta \alpha, jeśli podstawą tego stożka jest koło o polu równym 36\pi \, \, cm^{2} 

      • Zadanie 10.

        Trójkąt prostokątny o przeciwprostokątnej długości 10 i kącie ostrym 300 obracamy dookoła dłuższej przyprostokątnej. Oblicz objętość tak powstałej bryły.

      • Zadanie 11.

        Trójkąt prostokątny o przyprostokątnych długości 4 i 3 obracamy dookoła przeciwprostokątnej. Oblicz objętość tak powstałej bryły.

      • Zadanie 12.

        Trójkąt równoramienny o podstawie 10 cm i ramionach 13 cm obracamy wokół prostej zawierającej jego ramię. Oblicz pole powierzchni otrzymanej bryły.

    • Kula

      • Zadanie 1.

        a) Pole powierzchni kuli jest równe 144π cm2. Oblicz objętość tej kuli. b) Objętość kuli jest równe 36π cm3. Oblicz pole powierzchni tej kuli.

      • Zadanie 2.

        Kulę o promieniu 10 cm przecięto płaszczyzną. Otrzymany przekrój jest kołem o środku oddalonym od środka kuli o 7 cm. Oblicz pole tego koła.

      • Zadanie 3.

        Dane są dwie kule o promieniach 3 cm i 5 cm oraz wspólnym środku. Oblicz pole przekroju utworzonego przez przecięcie większej kuli płaszczyzną styczną do mniejszej

    • Bryły podobne

      • Zadanie 1.

        Dane są dwie kule. Objętość pierwszej kuli jest równa 36π cm3, a druga ma promień dwa razy dłuższy od promienia pierwszej kuli. Oblicz objętość drugiej kuli. Jaki jest stosunek ich pół powierzchni ?

      • Zadanie 2.

        Dane są dwa podobne stożki. Pole powierzchni całkowitej większego stożka jest o 125% większe od pola powierzchni całkowitej mniejszego. Oblicz wysokość większego stożka, jeśli wysokość  mniejszego jest równa 6 cm.

      • Zadanie 3.

        Powierzchnia kulistego balonu po dopompowaniu zwiększyła się o 44%. O ile procent wzrosła objętość balonu ?

      • Zadanie 4.

        Stożek o objętości 27π cm3 przecięto płaszczyzną równoległą do podstawy. Płaszczyzna podzieliła wysokość stożka w stosunku 2:1. Oblicz objętość brył powstałych w wyniku podziału.